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Abstract

The collocated-mesh scheme is often favored over the staggered-mesh scheme for turbulence simulation in complex
geometries due to its simpler form in curvilinear coordinates. The collocated mesh scheme does not conserve kinetic energy
however, and few careful checks of the impact of these errors have been made. In this work, analysis is used to identify two
sources of kinetic energy conservation error in the collocated-mesh scheme: (1) errors arising from the interpolations used
to estimate the velocity on the cell faces, and (2) errors associated with the slightly inconsistent pressure field used to ensure
mass conservation for the cell face volume fluxes. It is shown that the interpolation error can be eliminated through the use
of first-order accurate centered interpolation operators with mesh-independent weights. The pressure error appears to be
intrinsic to the scheme and it is shown to scale as O(Dt2Dx2). The effects of the conservation errors are investigated numer-
ically through simulations of inviscid flow over an airfoil and in large eddy simulations of turbulent channel flow. Neither
the interpolation error nor the pressure error appear to lead to significant problems in the channel flow simulations where
viscous dissipation is present and where the Cartesian mesh is stretched in only one direction. The inviscid airfoil simula-
tions performed on a curvilinear mesh show a much greater sensitivity to the interpolation error. The standard second-
order centered interpolation is shown to lead to severe numerical oscillations, while the kinetic energy-conserving
first-order centered interpolation produces solutions that are almost as smooth as those obtained with a third-order
upwind interpolation. When compared in channel flow simulations, however, the first-order centered interpolation is
shown to be far superior to the third-order upwind interpolation, the latter being adversely affected by numerical dissipa-
tion. Only slight differences were noted when comparing channel flow simulations using first-order and second-order cen-
tered interpolations. These results suggest that numerical oscillations can be controlled in curvilinear coordinates through
the use of properly-constructed non-dissipative centered interpolations.
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1. Introduction

Numerical Simulation of turbulent flows, using either Direct Numerical Simulation (DNS) or Large Eddy
Simulation (LES), requires high-fidelity numerical methods. For incompressible flow, it is highly desirable to
have a scheme that conserves mass, momentum, and kinetic energy. In practice, it is rather difficult to satisfy
these three constraints simultaneously and one is often faced with the need to give up strict conservation. For
computations in Cartesian coordinates, solution methods for the incompressible Navier–Stokes equations
have been successfully developed in the past using most often the staggered-mesh scheme since it is fully-
conservative in this case. In recent years, more effort has been put in developing solution methods in curvilin-
ear coordinates, however the extension of the staggered-mesh scheme to such coordinate system is not entirely
straightforward leading many researchers to opt for simpler formulations. Foremost among these is the so-
called collocated-mesh scheme, which has been used by a number of investigators [1,3,4,8,19,30,31], who were
interested in performing turbulence simulations in complex geometries using body-fitted grids. It is important
to notice that in this quest for simpler formulation in complex geometries, several other types of grid layouts
have been studied with relative success for some of them [10,21,22].

Morinishi et al. [14] analyzed the conservation properties of several Finite-Difference (FD) schemes for
both staggered- and collocated-grid arrangements. By restricting The analysis to Cartesian uniform meshes,
Morinishi et al. showed that staggered-mesh methods can be made fully-conservative, whereas collocated-
mesh methods will always contain an energy conservation error of the form O(DtmDxn) due to the pressure
formulation. Recently, Morinishi et al. [15] extended their work on non-uniform staggered grid, proposing
a new finite difference scheme in cylindrical coordinates for incompressible flow. Their scheme conserves both
momentum and kinetic energy for inviscid flow with the exception of the time marching error, provided that
the discrete continuity equation is satisfied.

Although the FD and the Finite Volume (FV) approaches are equivalent on Cartesian uniform meshes [5],
the FV approach seems to be more appropriate and thus widely spread in the Computational Fluid Dynamics
community when problems involving curvilinear coordinates are solved. As a result, the FV approach has
been adopted here to carry out the numerical solution of the Navier–Stokes equations and to perform the
analysis of the conservation properties associated with the collocated-mesh scheme with boundary-fitted grid.
The derivation shows that the collocated-mesh scheme may develop a second kinetic energy conservation error
due to interpolation practices. The interpolation is necessary when information is needed at locations other
than the center of the control volume. The popular second-order scheme, obtained by a straightforward linear
interpolation between the two nodes on either side of the face, contains this extra source of kinetic energy con-
servation error, therefore creating the need to seek alternate interpolation operators.

Like the others before us, we were motivated to use the collocated-mesh scheme for complex flow LES due
to it simpler form. Before doing this, however, we wanted to perform numerical experiments to investigate the
impact of the kinetic energy conservation errors. We were also concerned with the prevalence of upwind inter-
polations used by prior investigators [4,8,19,30,31] when performing turbulence simulations with the collo-
cated-mesh scheme in curvilinear coordinates, with more than one non-uniform direction and non-periodic
boundary conditions. Any serious problems stemming from the kinetic energy conservation errors, or from
the use of dissipative upwind interpolations would be grounds for us to reject the collocated-mesh scheme
and simply code the staggered-mesh scheme in curvilinear coordinates [29].

In this study, three types of schemes are compared: (1) a properly-constructed (but first-order) central
difference scheme where the advective terms are kinetic energy conserving on a general mesh, (2) an improp-
erly-constructed (but second-order) central difference scheme that is not kinetic energy conserving on a general
mesh, and (3) a third-order dissipative scheme. The third-order scheme is dissipative since the differencing
stencil is not symmetric (i.e. upwind). One of the basic properties of FD schemes is that properly-constructed
central schemes result only in phase error whereas upwind schemes always result in both phase and dissipation
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errors [23]. This is true independent of the order of accuracy. While the third-order upwind scheme will always
remove energy from the simulation by virtue of numerical dissipation, the improper second-order scheme may
either add or subtract energy. Thus, while both the improper second order and the upwind schemes are non-
conservative, the nature of the error can be rather different. The upwind scheme is expected to produce smooth
solutions where the high-frequencies are damped by numerical dissipation. At the same time, one can be
apprehensive about the improper second-order central scheme since its errors can act as energy sources which
might lead to numerical instability. Finally, it can be anticipated that the proper first-order scheme should be
stable and should not incorrectly damp the high frequencies. The fairly high magnitude of the phase errors,
however, in the first-order scheme might be worrisome.

The objective of this work is twofold: (1) to clearly state the source of the conservation errors through anal-
ysis, and (2) to provide numerical results that address the suitability of the collocated-mesh scheme for turbu-
lence simulation in generalized coordinates. The paper is organized as follows. The staggered-mesh and the
collocated-mesh arrangements are presented in Section 2. The discrete operators used in this paper and the
mathematical analysis of the kinetic energy conservation are derived in Section 3. Finally, the numerical
results for the inviscid flow over an airfoil and for LES of turbulent channel flow are discussed in Section 4.

2. Grid arrangement

For numerical investigation of the incompressible Navier–Stokes equations with a structured computa-
tional grid, either the staggered-mesh arrangement or the collocated-mesh layout are often used depending
on the level of complexity of the geometry.

2.1. Staggered-grid system

The staggered-mesh arrangement in curvilinear coordinates is shown in Fig. 1. The contravariant velocity
components Ui (or U, V, W) are solution variables and are distributed around the pressure points p. This
layout has the advantage that, when multiplied by the cell face area, the velocity components give the exact
volume fluxes, Fi. This feature leads to a simplified mass balance computation and results in fully-coupled
velocity and pressure fields.

When properly-formulated, the second-order staggered-mesh scheme should conserve mass, momentum,
and kinetic energy, irrespective of the underlying coordinate system. In developing higher-order schemes,
Morinishi et al. [14] first reviewed the conservation properties of several existing schemes cast in uniform
Cartesian coordinates. They were able to show that all correctly-coded second-order accurate forms of the
non-linear terms (divergence, advective, rotational, and skew-symmetric) are equivalent numerically and
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Fig. 1. Staggered-mesh arrangement in two-dimensional plane.
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fully-conservative. Later Vasilyev [25] extended the work of Morinishi et al. to the case of non-uniform Carte-
sian meshes. In this work, Vasilyev advocated the use of a mapping to uniform computational space where
grid-independent difference and averaging operators could be used. In spite of this, he chose to analyze the
divergence form of the non-linear terms in physical space. He found that such a formulation does not conserve
kinetic energy due to a lack of commutivity between the average and difference operators. This error can be
dispensed with by choosing to work with the non-linear term written in the uniform computational space. The
transformation is quite simple in the case of a non-uniform Cartesian mesh, and the fully-conservative formu-
lation can be written as
dF j

dnj
¼ 0; ð1Þ

dUi

dt
þ 1

V
ni

d
dnj
ðU i

nj F j
niÞ þ dp

dxi
þ ðviscÞi ¼ 0; ð2Þ
where V is the cell volume, Fi is the volume flux, ni is a computational space with unit displacements, and
(visc)i are the viscous terms. The commutation error discussed by Vasilyev [25] does not appear in this formu-
lation since both the average and difference operations are performed in the uniform computational space. The
only subtle point is that this formulation requires an average of the physical velocity components in the
computational space (i.e. U i

nj ). Although this operation is easy to code (weights of 1/2), it results in a an
approximation that is only first-order accurate. This same issue arises in the collocated mesh scheme and will
be discussed in more detail in Section 3.

However, when using curvilinear coordinates, it is desirable to use the collocated arrangement which uses
only one common control volume for all velocity component. As a result, it requires less memory storage and
yields simpler equations than when the contravariant velocity components are employed [9,16,17,19].

2.2. Collocated grid system

The collocated-mesh arrangement in curvilinear coordinates is shown in Fig. 2. The Cartesian velocity com-
ponents ui (or u, v, w) are stored with the pressure, p, at the cell center. In addition, volume fluxes, Fi, are
defined at the cell face in a manner analogous to the staggered-mesh system.

The volume fluxes are not solution variables, but rather are determined through interpolation of the cell-
centered ui values plus a projection operation that guarantees exact conservation of mass [18]. Use of the mass-
conserving volume fluxes results in a pressure equation identical to that in the staggered-mesh system and thus
also leads to fully-coupled velocity and pressure fields. While the pressure field determined in this manner leads
to mass conserving volume fluxes, it leaves the primary solution variables, ui, only approximately divergence
v
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Fig. 2. Collocated-mesh arrangement in two-dimensional plane.
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free. As pointed out by Morinishi et al. [14], and discussed in the next section, this defect leads to one source of
kinetic energy conservation error.

3. Analysis

3.1. Finite volume approach

The mass and momentum conservation laws written in integral form are
Z
S
ðujnjÞdS ¼ 0 ð3Þ

o

ot

Z
V

ui dVþ
Z

S
uiðujnjÞdS þ

Z
S

pni dS þ ðviscÞi ¼ 0 ð4Þ
where ui is the velocity described in Cartesian coordinates, p is the specific pressure (pressure divided by den-
sity), nj is the outward-pointing normal vector and (visc)i represent a generic form of the viscous terms. The
viscous terms will not be written out explicitly in what follows since we are concerned only with the kinetic energy
conservation properties of the inviscid terms. The interested reader can find a clear description of the viscous
terms in Ref. [5].

In the Finite Volume (FV) method, each computational cell makes up a control volume on which the inte-
gral conservation laws are enforced. A typical control volume (CV), together with the notation we shall use is
shown in Fig. 3. For simplicity, we shall perform the analysis in two dimensions. Generalization to three
dimensions is rather straightforward, does not require any extra assumptions and does not introduce any addi-
tional kinetic energy conservation issues as discussed in Section 4. The CV surface consists of four plane faces,
denoted by lower-case letters (n, e, s, w) corresponding to their location with respect to the central node C.
Adjacent nodes are denoted by upper case letters (i.e. N, NE, E, etc). Superscripts will be used throughout
to denote the location where a quantity is evaluated. Subscripts i and j will always refer to Cartesian vector
components. Thus, as shown in Fig. 3, the Cartesian components of the normal to the east face are denoted by
ne

j . Finally, displacements along the mesh lines connecting E–W points are denoted by the equivalent symbols
ne and nw, whereas those corresponding to displacements along N–S points are denoted by nn and ns.
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Fig. 3. A typical CV and the notation used for a 2D curvilinear grid.
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The surface integrals in Eqs. (3) and (4) are approximated by the sum of the fluxes taken over the cell faces.
Since the flow variables are stored at the cell centers, interpolation must be used to estimate the fluxes on the
cell faces. The kinetic energy conservation properties of a given scheme are tightly linked to the details of the
flux interpolation and we will pay great attention to this matter in what follows. For the moment, let ui

l denote
a generic interpolation of the velocity to the face l � n, e, s, w. The details of the interpolation will be discussed
in the following section.

For a second-order method, it is sufficient to treat both the interpolated velocity and the normal vector as
constants over the extent of a cell face. Thus the surface integrals in Eqs. (3) and (4) can be approximated by
simple products of the interpolated velocity and the face geometric properties. For example, an approximation
to the mass conservation law takes the form
2 Th
advect
Z
S
ðujnjÞdS ’

X
l¼n;e;s;w

uj
l nl

jDSl|fflffl{zfflffl}
Sl

j

ð5Þ
where Sl
j is the surface area-weighted normal vector. Although this form of the mass conservation law is rather

straightforward, it will result in pressure–velocity decoupling when the pressure projection is made. This sit-
uation is usually avoided by switching to a Rhie and Chow-type interpolation [18] for the cell mass flux Fl. For
an incompressible method, this modification amounts to arranging the pressure Poisson equation so that the
interpolated fluxes conserve mass exactly. This can be achieved in a fractional-step method by interpolating
the intermediate velocity2 to the face and then applying the pressure correction to these values. If the interme-
diate velocity is denoted by u�j , then the mass-conserving volume fluxes, Fl, are determined via
F l ¼ u�j
l
Sl

j � aDt
Sl

j

Vl

X
mðlÞ

pmSm
j ð6Þ
where a is a parameter associated with the time stepping method and Vl is the volume of the shifted cell centered
around the midpoint of face l (see Fig. 4). The index m is used to denote the ‘‘face values’’ for the shifted cell. The
index m consists of the collection of the nodal values C, N, E, S, and W, as well as the primary cell corner points ne,
se, sw, and nw. As shown in Table 1, for each value of l, there is a unique set of four m values which correspond to
the faces of the shifted volume centered around face l. Note that, although the pressure pm is available directly
when m = C, N, E, S, W, interpolation must be used for the corner points (i.e. m = ne, se, sw, nw). These latter
interpolations must be bi-directional since the corner points are surrounded by four nodal values.

A Poisson equation for the pressure is generated by requiring that the volume fluxes in Eq. (6) sum to zero
over each cell. This condition leads to
X

l¼n;e;s;w

X
mðlÞ

Sl
jS

m
j

Vl

 !
pm ¼ 1

aDt

X
l¼n;e;s;w

u�j
l
Sl

j ð7Þ
The only detail remaining in the discretization of the conservation laws is an approximation of the volume
integral in Eq. (4). If the nodal point is located at the centroid of the cell, then a second-order approximation
of the volume integral is simply the product of the nodal value, ui, and the cell volume, VC. Thus second-order
finite-volume approximations to Eqs. (3) and (4) are
X

l¼n;e;s;w

F l ¼ 0 ð8Þ

VC dui

dt

� �
þ

X
l¼n;e;s;w

ui
lF l þ

X
l¼n;e;s;w

�plSl
i þ ðviscÞi ¼ 0 ð9Þ
Note that the mass-conserving volume fluxes, Fl are also used in the momentum equation.
e intermediate velocity arises from the first stage of the fractional-step method where a provisional time step is made using only
ion and diffusion terms.



Table 1
Correspondence between the face index l and the associated discrete points (index m)

l m(l)

n C, nw, N, ne
e C, ne, E, se
s C, se, S, sw
w C, sw, W, nw
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Fig. 4. Shifted volume used for the pressure correction. A volume centered around face �e� is used for illustration. There are three other
shifted volumes, one centered around each of faces n, s, and w.
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Since the pressure is determined to ensure that the face volume fluxes conserve mass, it is not possible to
guarantee that the cell center values (ui) remain solenoidal. However, the cell-center divergence can be kept
to a minimum by employing the following pressure correction:
ui ¼ u�i �
aDt

VC

X
l¼n;e;s;w

�plSl
i ð10Þ
The cell-center correction given above can be used to rewrite Eq. (6) as follows:
F l ¼ uj
lSl

j � aDt
1

Vl

X
mðlÞ

pmSm
j �

1

VC

X
q¼n;e;s;w

�pqSq
j

l
" #

Sl
j ð11Þ
The term in brackets above is proportional to the difference between two alternative approximations to the net
pressure force. Each of these approximations are of order m, where m = min(2, n), and where n is the order of
the interpolation. Since each term is of order m, the difference is also of order m. This result demonstrates that
the Rhie and Chow interpolation [18] is an order m modification to the nodal velocity interpolated to the cell
face. By summing the above relation over a cell and making use of Eq. (8), one can also infer that the cell-
center divergence scales like DtDnm

l . As discussed below, the Dt scaling for the flux interpolation and the
cell-center divergence can be upgraded to Dt2 through use of the Van Kan pressure correction scheme[24].
When this is done, the resulting OðDt2Dnm

l Þ scaling implies that the cell-center divergence can be controlled
to a fairly high degree.
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3.2. Interpolation operators

With the idea of having to estimate fluxes on the faces of the CV, a wide variety of possibilities exist for the
interpolations required by the finite volume scheme. In our framework, the approximations to the surface and
volume integrals are restricted to second-order accurate schemes. It is easy to show that second-order accuracy
can be achieved with a two-point stencil (i.e. by using only the two adjacent points). Using this approach, a
general form for a quantity interpolated to the east face with a two-point stencil is
�/
e � ð1� wÞ/C þ w/E ð12Þ
where /C and /E are the adjacent nodal values (see Fig. 3), and where w is a weighting factor. This formula is
second-order accurate if w = jDneCj/jDnEj and is first-order accurate otherwise. Here DneC is the distance be-
tween the east face and the cell center, and DnE = DneC + DnEe is the approximate curvilinear distance between
the central node and its neighbor to the east.

It is useful to rewrite the interpolation operator as the sum of two operators, one with the mesh-indepen-
dent weights and a second containing the mesh information:
�/
e ¼ 1

2
½/C þ /E�|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

�/
e0

þ w� 1

2

� �
DnE|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

re

d/
dne

; ð13Þ
where d//dne = (/E � /C)/DnE. In the next section we shall show that the second term above can be respon-
sible for a kinetic energy conservation error.

For use in the kinetic energy conservation analysis, it is necessary to define a special interpolation operator
for products. This operator was first introduced by Morinishi et al. [14]. Here it is simply restated using our
notation. Again using the east face as an illustration, Morinishi�s special interpolation operator for products
takes the form
c/w
e
¼ 1

2
ð/CwE þ wC/EÞ ð14Þ
These two interpolation operators given above can be generalized for interpolation to an arbitrary face l by
writing
�/
l ¼ �/

l0 þ rl
d/
dnl

; ð15Þ
and
 c/w
l
¼ 1

2
ð/CwL þ wC/LÞ. ð16Þ
where C is the node of the primary cell and where L is the node of the adjacent cell displaced in the l direction.
For example, if l = e, then L = E.

Morinishi et al. [14] also presented several identities involving combinations of interpolation and differen-
tiation operators. One of these identities will be needed in the following section and thus it is restated here in
finite-volume form. This relation is
/C
X

l¼n;e;s;w

�w
l0 Ql þ wC

X
l¼n;e;s;w

�/
l0 Ql ¼

X
l¼n;e;s;w

c/w
l
Ql þ ð/CwCÞ

X
l¼n;e;s;w

Ql ð17Þ
where Ql is a quantity known on the cell face (i.e. no interpolation needed). This relation can be specialized for
our purposes by taking / = ui, w = p, and Ql ¼ Sl

i . With these replacements, Eq. (17) can be rewritten as
ui

X
l¼n;e;s;w

�pl0 Sl
i ¼

X
l¼n;e;s;w

cuip
lSl

i þ ðuipCÞ
X

l¼n;e;s;w
Sl

i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼0

�pC
X

l¼n;e;s;w

�ul0
i Sl

i ð18Þ
Note that the second term on the right-hand side vanishes for a closed cell. A second variant of Eq. (17) is
obtained by taking / = ui, w = ui, and Ql = Fl. When this is done we obtain
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ui

X
l¼n;e;s;w

ui
l0 F l ¼

X
l¼n;e;s;w

1

2
duiui

l
� �

F l þ 1

2
uiui

� � X
l¼n;e;s;w

F l

|fflfflfflfflffl{zfflfflfflfflffl}
¼0

ð19Þ
Again the second term on the right-hand side vanishes, this time due to the continuity relation (Eq. (8)).

3.3. Kinetic energy conservation

The kinetic energy equation is obtained by taking the dot product of the velocity with the momentum equa-
tion, and then using the continuity relation to simplify the result. The resulting equation can then be integrated
over the domain to give the integral form of the kinetic energy equation. Continuous analysis shows that both
the advective and pressure terms conserve kinetic energy since they can be written as flux integrals. Similarly,
the discrete system will be conservative if the advective and pressure terms in the discrete kinetic energy equa-
tion can be put in flux form. In order to investigate this prospect, we multiply the discrete momentum equation
by the velocity and then perform simplifications aimed at writing the product in flux form. It is convenient to
treat the advective and pressure terms separately. Focusing first on the advective term, we rewrite the inter-
polation operation in Eq. (9) using Eq. (15), and multiply the result by ui to get
ui

X
l¼n;e;s;w

ui
lF l ¼ ui

X
l¼n;e;s;w

ui
l0 F l þ ui

X
l¼n;e;s;w

rl
dui

dnl
F l ð20Þ
Now making use of Eq. (19), the above relation becomes
ui

X
l¼n;e;s;w

ui
lF l ¼

X
l¼n;e;s;w

1

2
duiui

l
� �

F l þ ui

X
l¼n;e;s;w

rl
dui

dnl
F l ð21Þ
The first term on the right-hand side is in flux form and is thus conservative. The second term can not be put in
flux form and thus represents a kinetic energy error arising from the interpolation. Eq. (13) shows that this
term is of order (w � 1/2)DnL. Thus a small kinetic energy error exists unless w = 1/2. On a uniform mesh
the w = 1/2 condition is satisfied and the advective terms are both second-order accurate and kinetic energy
conserving. For non-uniform meshes there is a trade off between interpolation accuracy and kinetic energy
conservation. If second-order interpolations are used on a non-uniform mesh, then w 6¼ 1/2 and the advective
terms will not conserve kinetic energy. Alternatively, the advective terms can be constrained to conserve ki-
netic energy on a non-uniform mesh but the interpolation accuracy must be reduced to first order through
use of mesh-independent weights of w = 1/2.

The kinetic energy conservation property of the pressure term is analyzed in a similar fashion. The inter-
polation operator defined in Eq. (15) is applied to the pressure term in Eq. (9) and the result multiplied by the
velocity to get
ui

X
l¼n;e;s;w

�plSl
i ¼ ui

X
l¼n;e;s;w

�pl0 Sl
i þ ui

X
l¼n;e;s;w

rl
dp
dnl

Sl
i ð22Þ
Now making use of Eq. (18), the above relation is rewritten as
ui

X
l¼n;e;s;w

�plSl
i ¼

X
l¼n;e;s;w

cuip
lSl

i � p
X

l¼n;e;s;w

ui
l0 Sl

i þ ui

X
l¼n;e;s;w

rl
dp
dnl

Sl
i ð23Þ
Finally, Eq. (11) is used to simplify the second term on the right-hand side. The final result is
ui

X
l¼n;e;s;w

�plSl
i ¼

X
l¼n;e;s;w

cuip
lSl

i � p
X

l¼n;e;s;w

F l � paDt
X

l¼n;e;s;w

1

Vl

X
mðlÞ

pmSm
i �

1

VC

X
q¼n;e;s;w

�pqSq
i

l0
" #

Sl
i

þ ui

X
l¼n;e;s;w

rl
dp
dnl

Sl
i ð24Þ
The first term on the right-hand side is in flux form and is thus conservative. The second term vanishes due
to the continuity relation. The third term is a kinetic energy error arising from the fact that the cell-center
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velocities do not conserve mass exactly. The final term is a kinetic energy conservation error due to the
interpolation.

The advective and pressure error terms are added together to form ðEkeÞcoll, the total error in kinetic energy
conservation for the collocated-mesh scheme " #
ðEkeÞcoll ¼ ui

X
l¼n;e;s;w

rl
dui
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F l þ dp
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i
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ð25Þ
This analysis shows that there are two sources of kinetic energy conservation error for the collocated-mesh
scheme. The interpolation error will be present if second-order, mesh-dependent weighting factors are used.
It can be eliminated by choosing first-order fixed weights of 1/2 (rl = 0). Verstappen and Veldman [27,28] rec-
ognized the conservation error associated with mesh-dependent averaging weights and opted for constant
weights of 1/2, in the case of a non-transformed staggered-mesh system.

Since the pressure error can not be eliminated, it is of interest to evaluate its scaling order. Let us focus on

the term inside the square bracket in Eq. (25). To leading order, the ð.Þl operator on the first term can be dis-

tributed. Furthermore, it is easy to see that 1=VC
l
’ 1=Vl and Sl
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l
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i . With this in mind, one can write
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From the above equation, it is clear that the spatial pressure error scales like O(Dn2). In addition, the O(Dt)
dependence for the pressure error in Eq. (25) can be reduced to O(Dt2) through the use of the Van Kan scheme
[24]. In this formulation, one effectively projects with dp = pn+1 � pn . (op/ot)Dt instead of p in Eq. (11) and
thus the terms proportional to p in Eq. (25) are reduced by a factor of Dt.

There are two important questions regarding the kinetic energy errors: (1) are the pressure errors strong
enough to de-stabilize the scheme, and (2) does the kinetic energy violation due to second-order interpolations
negate any increase in accuracy over the first-order (kinetic energy conserving) interpolations? These questions
will be explored in the following section where the numerical experiments are presented and discussed.

4. Numerical results

4.1. Inviscid flow around an airfoil

The inviscid two-dimensional flow over a NACA-0012 airfoil at zero angle of attack has been considered to
test the behavior of the collocated mesh arrangement in curvilinear coordinates. A C-mesh containing
400 · 128 grid-points with the outer boundary placed at three chords is used for the study. The external
boundaries of the computational domain are presented in Fig. 5. The mesh is stretched in both the radial
and azimuthal directions in order to better resolve the flow near the leading and trailing edges. For accuracy
purposes the inflow boundary conditions are set using the values obtained from a potential flow solution,
while a convective condition is implemented at the exit of the domain. A finite volume approach is used to
treat the streamwise and wall-normal directions, while Fourier collocation is available in the spanwise direc-
tion for future computation in three dimension. The code makes use of a third-order Runge–Kutta explicit
time marching scheme and the pressure Poisson equation is solved using a multigrid technique [2].

The simulation are performed using three different momentum interpolation operators: (1) the first-order
centered interpolation, w = 1/2, only the second term in Eq. (25) is present, (2) the second-order centered
interpolation, w ¼ jnl�nCj

jnL�nCj
, both terms in Eq. (25) are presents, and (3) the third-order upwind interpolation

(QUICK-type [7]). We chose the third-order QUICK scheme due to its prevalence in earlier works. This is a
well-constructed scheme that contains much lower dissipation levels than first or second-order upwind
treatments.

In order to gain some insight into the conservative properties of the numerical schemes, we monitored the
root mean square (rms) difference between the computed velocity field and the one obtained with a potential
flow analysis. This rms quantity, velrms, is defined as
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Fig. 5. Inviscid NACA-0012 airfoil flow: external boundaries of computational domain.

F.N. Felten, T.S. Lund / Journal of Computational Physics 215 (2006) 465–484 475
velrms ¼
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where u and upf are, respectively, the computed and the potential flow streamwise velocities; v and vpf are,
respectively, the computed and the potential flow wall-normal velocities, and N is the number of interior
points in the computational domain. Fig. 6 shows the evolution of velrms, with respect to the dimensionless
time t� ¼ tU1

c , for the first-order centered interpolation and the second-order centered interpolation.
As expected for the first-order centered interpolation, velrms remains constant while for the second-order

interpolation it increases dramatically. Indeed lack of kinetic energy conservation for the second-order scheme
is responsible for the oscillations. As discussed earlier, the energy conservation error in this case is of unde-
termined sign and thus it acts as both sources and sinks. The sources produce high-frequency oscillations that
grow with time through a feedback mechanism (see Fig. 6). The following post-processing of both the pressure
field and the velocity field at a dimensionless time t* . 7.8, will corroborate this claim, indicating that the solu-
tion obtained with the second-order centered interpolation is getting further and further away from a solution
obtained by potential flow analysis.
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Fig. 7 shows the distribution of the pressure coefficient along the airfoil for the three operators considered.
The results for the first-order centered and third-order upwind interpolations are in good agreement with the
results of a potential flow analysis. The results for the second-order centered interpolation, on the other hand,
show very strong oscillations. More insight can be gained from a comparison of the streamwise velocity
contours shown in Fig. 8. As expected, the dissipative third-order upwind interpolation gives the smoothest
solution. It has an error term that is purely dissipative resulting in a smooth solution where the low-frequency
solution components are computed accurately. The associated non-physical attenuation of high-frequency
solution components has virtually no ill effect in this case since the mean flow solution is very well described
by the low-frequency components. This is the reason why upwind schemes are so popular. They are ideal for
most conventional CFD calculations (including Reynolds averaged turbulent cases) where only the mean flow
solution is sought. The first-order centered interpolation gives a reasonably smooth solution that is compara-
ble to the upwind interpolation, while on the opposite extreme, the second-order centered interpolation pro-
duces a flow field that is obscured by numerical oscillations. Thus it is quite fair to say that the kinetic energy
conservation is not a critical issue for mean flow calculations, unless it is of undetermined sign and results in
numerical instability.

Our first-order kinetic energy conserving scheme is at a disadvantage for the airfoil calculation since it strives
to retain small-scale energy. This feature results in some small amplitude point-to-point oscillations. These
residual oscillations are noticeable for the first-order interpolation in the region near the trailing edge of the
airfoil (see Fig. 8). A commonly used trick for improving the visual quality of solutions with oscillations arising
from energy conserving schemes is to plot the solution averaged to the cell face. This operation eliminates the
point-to-point oscillations and is consistent with either the first or second-order approximations. Had we done
this, the first-order solution would have appeared to be nearly identical to the third-order upwind solution. We
chose not to do this, however, since we wanted to present our scheme as honestly as possible.

With this in mind, the intensity of these oscillations is investigated using the quantity Iosc, defined as
Iosc ¼
upf � u

upf

���� ���� ¼ 1� u
upf

���� ���� ð28Þ
The maximum intensity of the oscillations for that particular region of the field is extremely small, Imax
osc ’

0:1%. To emphasize the above claim, Figs. 9 and 10 show the streamwise velocities, for the first-order centered
interpolation and the potential flow solution, plotted along the dotted line shown in Fig. 5. The residual oscil-
lations are undetectable in Fig. 9. Fig. 10 shows that it is only after restricting the ordinate between 0.95 and
1.01, for the streamwise velocities, that the presence of some minor oscillations is revealed.

It is concluded that, even though some residual oscillations are present in the field with the use of the first-
order centered interpolation; they are extremely weak, do not grow out of bound with time and do not seem to
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Fig. 8. Inviscid NACA 0012 airfoil flow: streamwise velocity contours. (a) First-order centered interpolation, (b) second-order centered
interpolation, and (c) third-order upwind interpolation.
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affect the solution. These results are rather significant since they imply that numerical oscillations can be con-
trolled without resort to dissipative upwind schemes. As we will show in the next section, the numerical
requirements for mean flow calculations and for turbulence simulation are rather different. While dissipative
schemes are ideal for mean flow calculations, they are not well suited for large eddy simulation where the
effects of dissipation have a large negative impact on the solution.

4.2. Turbulent channel flow

The influence of the two sources of kinetic energy conservation error are evaluated through LES of plane
channel flow at Res = 400, based on the channel half width and friction velocity. Two computer codes are
used; one is based on the staggered-mesh arrangement in the form of Eq. (2) and the other is based on the
collocated-mesh arrangement. In either case, finite differences are used only in the streamwise and wall-normal
directions and Fourier collocation is used in the spanwise direction. This arrangement allows for more efficient
convergence studies since it is only necessary to vary the mesh spacings in the x and y directions in order to
investigate the effects of the numerical error. Both codes make use of a third-order Runge–Kutta explicit time
marching scheme. The spanwise direction is de-aliased at no computational expense through the use of mesh
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shifting [20]. This is done in concert with the multi-step Runge–Kutta scheme. The pressure Poisson equation
is solved directly via Fourier transforms in x and z and tri-diagonal inversion in y direction.

4.2.1. Influence of the pressure error

In order to exclusively study the influence of the pressure error when the collocated-mesh arrangement is
used, the two codes were run using a first-order centered interpolation. The staggered-mesh arrangement is
then fully-conservative, while only the pressure error is present for the collocated layout.

Three mesh resolutions and several time step sizes are investigated in order to study the effect of the dis-
cretization and the time stepping errors (see Table 2). The computational domain is 8d · 2d · 2d, where d
is the channel half width. The subgrid-scale stresses are modeled using the dynamic model [6]. The results
are compared with the DNS data of Moser et al. [12] for Res = 395. It is generally believed that the low-order
statistics computed via LES should converge to the true solution (i.e. DNS) as the mesh is refined. This will
happen as long as the energy peak and inertial range portions of the spectrum resolved in the LES agree with
the DNS. For the convergence studies, the time step was held fixed for the three mesh resolutions. This time
step corresponds to the viscous stability limit on mesh C.



Table 2
Mesh spacings used for the LES of turbulent plane channel flow

Case Nx Ny Nz Dx+ Dy+ Dz+ Dt Æ us/d

A 16 16 32 200 4–127.15 25 9.1 · 10�4

B 32 32 32 100 2–62.63 25 9.1 · 10�4

C 64 64 32 50 1–30.91 25 9.1 · 10�4
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Fig. 11 shows the mean velocity profiles for the three mesh resolutions. As expected, both the staggered and
collocated results improve as the resolution is increased. The staggered-mesh results are consistently closer to
the DNS data for the two coarsest grid, and a very good agreement is achieved in the sublayer and log region
on the finest mesh (case C) for both mesh arrangements. Since the collocated mesh scheme in conjunction with
the Van Kan scheme [24] has a kinetic energy conservation error that scales like Dt2, we investigated the pos-
sibility that the differences in Fig. 11 are from this source. The time step was reduced by 50% on mesh C, and
increased by 400% on mesh B. In either case, the results were almost invariant to changes in the time step.

Fig. 12 shows a comparison of the turbulent velocity fluctuations. For the sake of clarity, only results
for urms and vrms, for cases A and C are shown. Once again the staggered-mesh results are superior to the
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collocated-mesh at all resolutions. The DNS data were not filtered and thus some of the apparent difference
between the LES and DNS is due to the unresolved energy in the LES. This effect should be minimal on mesh
C. The differences between the two schemes on the finest mesh (C) are minor and either method produces rea-
sonable results at this resolution. The velocity fluctuation profiles are also rather insensitive to changes in the
time step.

In conclusion, it is fair to believe that the pressure errors in the collocated mesh scheme do not have a vis-
ible impact on the results, provided that the simulation are run at a sufficiently high mesh resolution.

4.2.2. Influence of the interpolation operator

In order to check the influence of the momentum interpolation operator for turbulent flow simulation, we
used, similarly to the inviscid NACA-0012 airfoil case, a first-order centered interpolation, a second-order cen-
tered interpolation, and a third-order upwind interpolation.

First, in an effort to be thorough, the convergence of the third-order upwind scheme is investigated. Plots
comparable to the one displayed in Figs. 11 and 12 are presented, respectively, in Figs. 13 and 14 for the
QUICK scheme. Analogously to the first and second-order centered schemes, the results improve as the mesh
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resolution increases but with much larger errors since the high frequency portion of the energy spectrum is
eroded due to numerical dissipation.

Figs. 15 and 16 show respectively, the mean velocity profiles and the turbulent velocity fluctuations,
obtained on mesh C, for the three momentum interpolation. Note that for the sake of clarity only results
for urms and vrms are plotted in Fig. 16.

Both the first-order centered and the second-order centered interpolation agree relatively well with the DNS
data, with the first-order centered interpolation holding superior results. As expected from previous studied
performed by Mittal and Moin [13], the use of third-order upwind interpolation degrades the results
considerably.

After ruling out the use of up-winding interpolation, it is of interest to focus on the effect of locally lowering
the order of accuracy from second to first order, when using the first-order centered interpolation. The rate of
convergence of the LES results to the DNS data was then investigated, for the first-order and the second-order
interpolation, by forming the rms difference between the LES and DNS mean velocity profiles:
Erms ¼
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Fig. 15. Mean velocity profile for specific interpolation operator.

0

1

2

3

0 100 200 300 400

v+
rm

s
u+

rm
s

y+

Coll  - 1st Order Centered 
Coll - 2nd Order Centered 
Coll  - 3rd Order Upwind
DNS - Moser et al. (1999) 

Fig. 16. Velocity fluctuations for specific interpolation operator.



0.1

1

10

10 100

E
rm

s

N

1st order centered
2nd order centered

N-2

Fig. 17. Convergence history as a function of the mesh resolution.

482 F.N. Felten, T.S. Lund / Journal of Computational Physics 215 (2006) 465–484
Fig. 17 shows the Erms for both momentum interpolation as a function of the grid resolution. The two oper-
ators behave similarly and the second-order interpolation appears to converge at a slightly higher rate. The
second-order interpolation solution has a slightly smaller rms error as compared with the first-order interpo-
lation solution, on mesh C, even though Fig. 15 would suggest the opposite. The reason for this is that Fig. 15
is plotted on a log scale, which emphasizes the near-wall region. Even though the local truncation error is first
order for the first-order momentum interpolations, the global discretization error shows a convergence rate
close to second order between the finest two meshes. This interesting feature, previously discussed by Veldman
and Rinzema [26], was brought out by Manteuffel and White [11]. They proved that the global discretization
error, for slowly varying grids with appropriate boundary condition, is of second order if the change in mesh
size is restricted such that Di+1 � Di = O(D2), where D = max(Di). Since the mesh, used for the LES of plane
channel, is stretched respecting the above criterion in the wall-normal direction, the second-order convergence
rate between the finest two meshes is expected.

5. Conclusions

We have shown that, in general, the collocated-mesh scheme, often chosen over the classical staggered-mesh
arrangement in curvilinear coordinates, violates kinetic energy conservation due to two sources: (1) pressure
errors and (2) interpolation errors.

It does not appear possible to eliminate the first source of kinetic energy conservation error (pressure error).
It is possible, however, to limit the size of this error to O(Dt2Dx2). We could not discern any evidence of this
error in turbulent channel flow simulations, where its magnitude was varied by a factor of 16 through time step
refinement. These results suggest that pressure term is probably not a serious issue for LES where reasonably
fine meshes and small time steps are required for general accuracy purposes.

The second of these sources can be eliminated through the use of mesh-independent centered interpolation
operators. Although these operators are formally only first-order accurate, they are multiplied by geometric
terms that are of the order of the mesh spacing for practical computations. We observed second-order conver-
gence under mesh refinement for typical LES meshes used in turbulent channel flow. The kinetic energy conser-
vation errors associated with second-order centered interpolations were shown to lead to fairly severe numerical
oscillations in a test case involving the inviscid flow around an airfoil computed in curvilinear coordinates. The
oscillations could be controlled either by switching to a kinetic energy-conserving first-order centered interpola-
tion, or by switching to a third-order upwind interpolation. Since the use of dissipative interpolation for turbulent
simulation strongly degrades the results, we favor the centered interpolation approach.

A curious feature with our tests is that there is no correlation between the order of accuracy and the nature
of the numerical error. While the magnitude of the numerical error certainly decreases with the order of accu-
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racy, the effect of the numerical error on turbulence actually increases. From earlier work [13], we know that
large eddy simulation of turbulence requires that the smallest resolved scales retain the correct energy level.
Dissipative schemes are very effective at eroding small scale energy proving the simulation results to suffer
noticeably. Numerical dissipation, even at high order, is more detrimental to large eddy simulation than is
pure phase error at lower order. While this may seem counter-intuitive, the numerical error in conservative
schemes appears to the turbulence as a high-frequency phase scrambling term. Previous researchers [13] have
shown clearly that, while turbulence is very sensitive to artificial attenuation of small-scale energy, it is surpris-
ingly indifferent to phase scrambling.

Overall, this work suggests that the use of dissipative upwind interpolations may be unnecessary when the
collocated-mesh scheme is applied in complex body-fitted geometries. This would significantly increase the
fidelity of the numerical method for LES applications.
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